Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys Chem ; 307: 107168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367541

RESUMEN

The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to ß-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion. The mature hormone contains an amidated C-terminus. Analysis of an alignment of vertebrate amylin sequences reveals that the processing signal for amidation is strictly conserved. Furthermore, the enzyme responsible for C-terminal amidation is found in all of these organisms. Comparison of the physiologically relevant amidated form to a variant with a free C-terminus (Amylin-COO-) shows that replacement of the C-terminal amide with a carboxylate slows, but does not prevent amyloid formation. Pre-fibrillar species produced by both variants are toxic to cultured ß-cells, although hAmylin-COO- is moderately less so. Amyloid fibrils produced by either peptide are not toxic. Prior work (ACS Pharmacol. Translational. Sci. 1, 132-49 (2018)) shows that Amylin- COO- exhibits a 58-fold reduction in activation of the Amylin1 receptor and 20-fold reduction in activation of the Amylin3 receptor. Thus, hAmylin-COO- exhibits significant toxicity, but significantly reduced activity and offers a reagent for studies which aim to decouple hAmylin's toxic effects from its activity. The different behaviours of free and C-terminal amidated Amylin should be considered when designing systems to produce the polypeptide recombinantly.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hormonas Peptídicas , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Diabetes Mellitus Tipo 2/metabolismo , Amidas , Proteínas Amiloidogénicas , Amiloide/química
2.
Nature ; 615(7954): 934-938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949187

RESUMEN

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Asunto(s)
Microscopía por Crioelectrón , Complejo III de Transporte de Electrones , Complejo II de Transporte de Electrones , Complejo IV de Transporte de Electrones , Complejo I de Transporte de Electrón , Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/ultraestructura , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/ultraestructura , Mitocondrias/química , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/ultraestructura , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Evolución Molecular
3.
Biochim Biophys Acta Bioenerg ; 1863(7): 148591, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839926

RESUMEN

In mitochondria, complex IV (CIV) can be found as a monomer, a dimer or in association with other respiratory complexes. The atomic structure of the yeast S. cerevisiae CIV in a supercomplex (SC) with complex III (CIII) pointed to a region of significant conformational changes compared to the homologous mammalian CIV structures. These changes involved the matrix side domain of Cox5A at the CIII-CIV interface, and it was suggested that it could be required for SC formation. To investigate this, we solved the structure of the isolated monomeric CIV from S. cerevisiae stabilised in amphipol A8-35 at 3.9 Å using cryo-electron microscopy. Only a minor change in flexibility was seen in this Cox5A region, ruling out large CIV conformational shift for interaction with CIII and confirming the different fold of the yeast Cox5A subunit compared to mammalian homologues. Other differences in structure were the absence of two canonical subunits, Cox12 and Cox13, as well as Cox26, which is unique to the yeast CIV. Their absence is most likely due to the protein purification protocol used to isolate CIV from the III-IV SC.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Microscopía por Crioelectrón/métodos , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 12(1): 5925, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635654

RESUMEN

Iron-sulfur (FeS) proteins are ancient and fundamental to life, being involved in electron transfer and CO2 fixation. FeS clusters have structures similar to the unit-cell of FeS minerals such as greigite, found in hydrothermal systems linked with the origin of life. However, the prebiotic pathway from mineral surfaces to biological clusters is unknown. Here we show that FeS clusters form spontaneously through interactions of inorganic Fe2+/Fe3+ and S2- with micromolar concentrations of the amino acid cysteine in water at alkaline pH. Bicarbonate ions stabilize the clusters and even promote cluster formation alone at concentrations >10 mM, probably through salting-out effects. We demonstrate robust, concentration-dependent formation of [4Fe4S], [2Fe2S] and mononuclear iron clusters using UV-Vis spectroscopy, 57Fe-Mössbauer spectroscopy and 1H-NMR. Cyclic voltammetry shows that the clusters are redox-active. Our findings reveal that the structures responsible for biological electron transfer and CO2 reduction could have formed spontaneously from monomers at the origin of life.


Asunto(s)
Cisteína/química , Hierro/química , Modelos Químicos , Origen de la Vida , Sulfuros/química , Azufre/química , Bicarbonatos/química , Dióxido de Carbono/química , Técnicas Electroquímicas , Transporte de Electrón , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Espectroscopía de Mossbauer
5.
Proc Natl Acad Sci U S A ; 117(17): 9329-9337, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291341

RESUMEN

The organization of the mitochondrial electron transport chain proteins into supercomplexes (SCs) is now undisputed; however, their assembly process, or the role of differential expression isoforms, remain to be determined. In Saccharomyces cerevisiae, cytochrome c oxidase (CIV) forms SCs of varying stoichiometry with cytochrome bc1 (CIII). Recent studies have revealed, in normoxic growth conditions, an interface made exclusively by Cox5A, the only yeast respiratory protein that exists as one of two isoforms depending on oxygen levels. Here we present the cryo-EM structures of the III2-IV1 and III2-IV2 SCs containing the hypoxic isoform Cox5B solved at 3.4 and 2.8 Å, respectively. We show that the change of isoform does not affect SC formation or activity, and that SC stoichiometry is dictated by the level of CIII/CIV biosynthesis. Comparison of the CIV5B- and CIV5A-containing SC structures highlighted few differences, found mainly in the region of Cox5. Additional density was revealed in all SCs, independent of the CIV isoform, in a pocket formed by Cox1, Cox3, Cox12, and Cox13, away from the CIII-CIV interface. In the CIV5B-containing hypoxic SCs, this could be confidently assigned to the hypoxia-induced gene 1 (Hig1) type 2 protein Rcf2. With conserved residues in mammalian Hig1 proteins and Cox3/Cox12/Cox13 orthologs, we propose that Hig1 type 2 proteins are stoichiometric subunits of CIV, at least when within a III-IV SC.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón/métodos , Complejo III de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/fisiología , Hipoxia/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Isoformas de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
6.
Proc Natl Acad Sci U S A ; 117(17): 9349-9355, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291342

RESUMEN

Mitochondria metabolize almost all the oxygen that we consume, reducing it to water by cytochrome c oxidase (CcO). CcO maximizes energy capture into the protonmotive force by pumping protons across the mitochondrial inner membrane. Forty years after the H+/e- stoichiometry was established, a consensus has yet to be reached on the route taken by pumped protons to traverse CcO's hydrophobic core and on whether bacterial and mitochondrial CcOs operate via the same coupling mechanism. To resolve this, we exploited the unique amenability to mitochondrial DNA mutagenesis of the yeast Saccharomyces cerevisiae to introduce single point mutations in the hydrophilic pathways of CcO to test function. From adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria, we definitely established that the D-channel, and not the H-channel, is the proton pump of the yeast mitochondrial enzyme, supporting an identical coupling mechanism in all forms of the enzyme.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/química , Oxidorreductasas/química , Bacterias/metabolismo , Cobre/química , Cobre/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Transporte Iónico , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Bombas de Protones/metabolismo , Protones , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Sci Rep ; 9(1): 20207, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882860

RESUMEN

In cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Protones , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Transporte Iónico , Cinética , Mitocondrias/genética , Modelos Moleculares , Mutación , Oxidación-Reducción , Oxígeno/metabolismo , Conformación Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética
8.
Nat Ecol Evol ; 3(12): 1705-1714, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31686020

RESUMEN

Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1-3 SCAs, even though Fischer-Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10-C15 compounds. Here, we show that mixtures of these C10-C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it.


Asunto(s)
Células Artificiales , Calor , Agua de Mar , Temperatura
9.
Nat Struct Mol Biol ; 26(1): 78-83, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598554

RESUMEN

Cytochrome c oxidase (complex IV, CIV) is known in mammals to exist independently or in association with other respiratory proteins to form supercomplexes (SCs). In Saccharomyces cerevisiae, CIV is found solely in an SC with cytochrome bc1 (complex III, CIII). Here, we present the cryogenic electron microscopy (cryo-EM) structure of S. cerevisiae CIV in a III2IV2 SC at 3.3 Å resolution. While overall similarity to mammalian homologs is high, we found notable differences in the supernumerary subunits Cox26 and Cox13; the latter exhibits a unique arrangement that precludes CIV dimerization as seen in bovine. A conformational shift in the matrix domain of Cox5A-involved in allosteric inhibition by ATP-may arise from its association with CIII. The CIII-CIV arrangement highlights a conserved interaction interface of CIII, albeit one occupied by complex I in mammalian respirasomes. We discuss our findings in the context of the potential impact of SC formation on CIV regulation.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Membranas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochim Biophys Acta Bioenerg ; 1859(9): 705-711, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29852141

RESUMEN

Redox and CO photolysis FTIR spectra of yeast cytochrome c oxidase WT and mutants are compared to those from bovine and P. denitrificans CcOs in order to establish common functional features. All display changes that can be assigned to their E242 (bovine numbering) equivalent and to weakly H-bonded water molecules. The additional redox-sensitive band reported at 1736 cm-1 in bovine CcO and previously assigned to D51 is absent from yeast CcO and couldn't be restored by introduction of a D residue at the equivalent position of the yeast protein. Redox spectra of yeast CcO also show much smaller changes in the amide I region, which may relate to structural differences in the region around D51 and the subunit I/II interface.


Asunto(s)
Monóxido de Carbono/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Dominio Catalítico , Bovinos , Complejo IV de Transporte de Electrones/genética , Cinética , Luz , Oxidación-Reducción , Fotólisis , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
J Am Chem Soc ; 140(21): 6690-6699, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29722977

RESUMEN

Although several synthetic or xenobiotic nucleic acids (XNAs) have been shown to be viable genetic materials in vitro, major hurdles remain for their in vivo applications, particularly orthogonality. The availability of XNAs that do not interact with natural nucleic acids and are not affected by natural DNA processing enzymes, as well as specialized XNA processing enzymes that do not interact with natural nucleic acids, is essential. Here, we report 3'-2' phosphonomethyl-threosyl nucleic acid (tPhoNA) as a novel XNA genetic material and a prime candidate for in vivo XNA applications. We established routes for the chemical synthesis of phosphonate nucleic acids and phosphorylated monomeric building blocks, and we demonstrated that DNA duplexes were destabilized upon replacement with tPhoNA. We engineered a novel tPhoNA synthetase enzyme and, with a previously reported XNA reverse transcriptase, demonstrated that tPhoNA is a viable genetic material (with an aggregate error rate of approximately 17 × 10-3 per base) compatible with the isolation of functional XNAs. In vivo experiments to test tPhoNA orthogonality showed that the E. coli cellular machinery had only very limited potential to access genetic information in tPhoNA. Our work is the first report of a synthetic genetic material modified in both sugar and phosphate backbone moieties and represents a significant advance in biorthogonality toward the introduction of XNA systems in vivo.


Asunto(s)
ADN/química , Organofosfonatos/química , Polímeros/metabolismo , Xenobióticos/metabolismo , ADN/metabolismo , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Estructura Molecular , Organofosfonatos/metabolismo , Polímeros/química , Ingeniería de Proteínas , Xenobióticos/química
12.
Biophys J ; 111(10): 2099-2109, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851935

RESUMEN

The activation of the peroxynitrite anion (PN) by hemoproteins, which leads to its detoxification or, on the contrary to the enhancement of its cytotoxic activity, is a reaction of physiological importance that is still poorly understood. It has been known for some years that the reaction of hemoproteins, notably cytochrome P450, with PN leads to the buildup of an intermediate species with a Soret band at ∼435 nm (I435). The nature of this intermediate is, however, debated. On the one hand, I435 has been presented as a compound II species that can be photoactivated to compound I. A competing alternative involves the assignment of I435 to a ferric-nitrosyl species. Similar to cytochromes P450, the buildup of I435 occurs in nitric oxide synthases (NOSs) upon their reaction with excess PN. Interestingly, the NOS isoforms vary in their capacity to detoxify/activate PN, although they all show the buildup of I435. To better understand PN activation/detoxification by heme proteins, a definitive assignment of I435 is needed. Here we used a combination of fine kinetic analysis under specific conditions (pH, PN concentrations, and PN/NOSs ratios) to probe the formation of I435. These studies revealed that I435 is not formed upon homolytic cleavage of the O-O bond of PN, but instead arises from side reactions associated with excess PN. Characterization of I435 by resonance Raman spectroscopy allowed its identification as a ferric iron-nitrosyl complex. Our study indicates that the model used so far to depict PN interactions with hemo-thiolate proteins, i.e., leading to the formation and accumulation of compound II, needs to be reconsidered.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Ácido Peroxinitroso/metabolismo , Hemoproteínas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Staphylococcus aureus/enzimología
13.
Sci Rep ; 6: 34737, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721432

RESUMEN

Cystinuria is the commonest inherited cause of nephrolithiasis (~1% in adults; ~6% in children) and is the result of impaired cystine reabsorption in the renal proximal tubule. Cystine is poorly soluble in urine with a solubility of ~1 mM and can readily form microcrystals that lead to cystine stone formation, especially at low urine pH. Diagnosis of cystinuria is made typically by ion-exchange chromatography (IEC) detection and quantitation, which is slow, laboursome and costly. More rapid and frequent monitoring of urinary cystine concentration would significantly improve the diagnosis and clinical management of cystinuria. We used attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR) to detect and quantitate insoluble cystine in 22 cystinuric and 5 healthy control urine samples. Creatinine concentration was also determined by ATR-FTIR to adjust for urinary concentration/dilution. Urine was centrifuged, the insoluble fraction re-suspended in 5 µL water and dried on the ATR prism. Cystine was quantitated using its 1296 cm-1 absorption band and levels matched with parallel measurements made using IEC. ATR-FTIR afforded a rapid and inexpensive method of detecting and quantitating insoluble urinary cystine. This proof-of-concept study provides a basis for developing a high-throughput, cost-effective diagnostic method for cystinuria, and for point-of-care clinical monitoring.


Asunto(s)
Cistinuria/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Orina/química , Creatinina/orina , Cistinuria/orina , Ensayos Analíticos de Alto Rendimiento , Humanos , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier/economía
14.
Appl Spectrosc ; 70(6): 983-94, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27170705

RESUMEN

When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm(-1)) and dry (1464 cm(-1)) states and two intermediate (1454 cm(-1) and 1443 cm(-1)) forms that arise from specific urea-water and/or urea-urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined.


Asunto(s)
Creatinina/orina , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Urea/orina , Urinálisis/métodos , Creatinina/análisis , Desecación , Humanos , Humedad , Urea/análisis , Agua/análisis
15.
Biochim Biophys Acta ; 1837(7): 1012-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24685432

RESUMEN

We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4ms) than with the bovine oxidase (~1ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR→F and F→O reactions were slowed by factors of ~3 and ~10, respectively, and electron transfer from CuA to heme a during the PR→F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón , Mutación Missense , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochem Soc Trans ; 41(5): 1242-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24059514

RESUMEN

Assignments of IR bands of reduced minus oxidized IR difference spectra of bovine and related cytochrome c oxidases are reviewed and their linkages to specific metal centres are assessed. To aid this, redox-poised difference spectra in the presence of cyanide or carbon monoxide are presented. These ligands fix the redox states of either haem a3 alone or haem a3 and CuB respectively, while allowing redox cycling of the remaining centres.


Asunto(s)
Monóxido de Carbono/química , Complejo IV de Transporte de Electrones/química , Hemo/análogos & derivados , Animales , Monóxido de Carbono/metabolismo , Bovinos , Cobre/química , Cianuros/química , Hemo/química , Rayos Infrarrojos , Ligandos , Oxidación-Reducción/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier
17.
Chembiochem ; 14(14): 1852-7, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23943262

RESUMEN

Nitric oxide is produced in mammals by a class of enzymes called NO synthases (NOSs). It plays a central role in cellular signalling but also has deleterious effects, as it leads to the production of reactive oxygen and nitrogen species. NO forms a relatively stable adduct with ferrous haem proteins, which, in the case of NOS, is also a key catalytic intermediate. Despite extensive studies on the ferrous nitrosyl complex of other haem proteins (in particular myoglobin), little characterisation has been performed in the case of NOS. We report here a temperature-dependent EPR study of the ferrous nitrosyl complex of the inducible mammalian NOS and the bacterial NOS-like protein from Bacillus subtilis. The results show that the overall behaviours are similar to those observed for other haem proteins, but with distinct ratios between axial and rhombic forms in the case of the two NOS proteins. The distal environment appears to control the existence of the axial form and the evolution of the rhombic form.


Asunto(s)
Complejos de Coordinación/química , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/química , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico/química , Bacillus subtilis/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato , Temperatura
18.
J R Soc Interface ; 10(86): 20130183, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23864498

RESUMEN

The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Evolución Molecular , Fuerza Protón-Motriz/fisiología , Animales , Humanos
19.
J Am Chem Soc ; 135(15): 5802-7, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23537388

RESUMEN

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate the binding of Na(+) and Ca(2+)cations to bovine cytochrome c oxidase in its fully oxidized and partially reduced, cyanide-ligated (a(2+)a3(3+)-CN) (mixed valence) forms. These ions induced distinctly different IR binding spectra, indicating that the induced structural changes are different. Despite this, their binding spectra were mutually exclusive, confirming their known competitive binding behavior. Dissociation constants for Na(+) and Ca(2+) with the oxidized enzyme were 1.2 mM and 11 µM, respectively and Na(+) binding appeared to involve cooperative binding of two Na(+). Ca(2+) binding induced a large IR spectrum, with prominent amide I/II polypeptide changes, bandshifts assigned to carboxylate and an arginine, and a number of bandshifts of heme a. The Na(+)-induced binding spectrum showed much weaker amide I/II and heme a changes but had similar shifts assignable to carboxylate and arginine residues. Yeast CcO also displayed a calcium-induced IR and UV/visible binding spectra, though of lower intensities. This was attributed to the difficulty in fully depleting Ca(2+) from its binding site, as has been found with bacterial CcOs. The implications of Ca(2+)/Na(+) ion binding are discussed in terms of structure and possible modulation of core catalytic function.


Asunto(s)
Calcio/metabolismo , Calcio/farmacología , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Sodio/metabolismo , Sodio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Bovinos , Cianuros/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica/efectos de los fármacos , Saccharomyces cerevisiae/enzimología
20.
Biochim Biophys Acta ; 1817(10): 1921-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22503843

RESUMEN

Point mutations of E243D and I67N were introduced into subunit I of a 6histidine-tagged (6H-WT) form of yeast Saccharomyces cerevisiae mitochondrial cytochrome c oxidase. The two mutants (6H-E243D(I) and 6H-I67N(I)) were purified and showed ≈50 and 10% of the 6H-WT turnover number. Light-induced CO photolysis FTIR difference spectra of the 6H-WT showed a peak/trough at 1749/1740cm(-1), as seen in bovine CcO, which downshifted by 7cm(-1) in D(2)O. The bands shifted to 1736/1762cm(-1) in 6H-E243D(I), establishing that the carboxyl group affected by CO binding in mitochondrial CcOs is E243. In 6H-I67N(I), the trough at 1740cm(-1) was shifted to 1743cm(-1) and its accompanying peak intensity was greatly reduced. This confirms that the I67N mutation interferes with conformational alterations around E243. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación Missense , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Animales , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Bovinos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Fotólisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...